N AT 5

- 32

4 s / - -'77‘) Q»L/’Cq

Dynamic Compensation in the Central Pacific Ocean ,
' 5
Juan Homero Hinojosa ! and Bruce D. Marsh -

Department of Earth & Planetary Sciences, The Johns Hopkins University
Baltimore, Maryland

(* Now at Department of Geological Sciences, The University of Texas, El Paso)

ABSTRACT

The intermediate-wavelength geoid (A ~ 2000 km) and sea-floor topography fields in the central
Pacific Ocean have been studied in terms of static and dynamic compensation models. Topographic
features on the sea-floor with A < 1000 km have been found to be compensated both regionally, by the
elastic strength of the lithosphere, and locally, by displacing mantle material to reach isostatic
adjustraent. The larger-scale sea-floor topography and the corresponding geoid anomalies with A ~
2000 km cannot be explained by either local or regional .compensation. The topography and thc
resulting geoid anomaly at this wavelength have been modeled by considering the dynamic eflects
arising from viscous stresses in a layer of fluid with a highly temperature-dependent viscosity for the
cases of 1) surface cooling, and ii) basal heating. In this model, the mechanical properties of the elastic
part of the lithosphere have been taken into account by considering an activation energy of about 520
k}/mol in the Arrhenius law for the viscositySNumerical‘predictions of the topography, total geoid
anomaly, and admittance have been obtained, and the results show that the thermal perturbation in the
layer, which accouants for the mass deficit, must be located close to the surface to compensate the
gravitational cffect of the surface deformation. For the casc of basal heating, the temperature
dependence of viscosity results in a separation of the upper, quasi-rigid lid from the lower mobile fluid,
heace inhibiting the development of a compensating thermal perturbation at shallow depths. The
results clearly rule out small-scale, upper-mantle convection as the source of these anomalics. Instcad,
the geophysical observables can be well explained by a shallow, transient thermal perturbation,

INTRODUCTION

Satellite radar altimetry has yielded a very accurate determination of the gravity and geoid anomaly
ficlds over the occans {e.g., Marsh et al., 1986]. Because a gravity anomaly is an indicator of anomalous
mass in a region, such information may also be obtained from a geoid anomaly, which is simply the
cquipotential surface produced by that anomalous mass. The geoid anomaly ficld has beea studied to
yicld geophysical information ranging from the thermal evolution of the oceanic lithosphere [e.g,
Parsons & Sclater, 1977), the mechanical properties of the occanic lithosphere [e.g., Watts et al., 1980},
mantle rheology at subduction zones {Hager, 1984; Richards & Hoger, 1984], to the mode of convection
in thc upper mantle {McKenzie, 1977; Parsons & Daly, 1983; Buck & Parmentier, 1986; Hinojosa, 1986).
This paper focuses on the high degree and order (I,m >12,12) geoid field and the corresponding sea-
floor topography in the central Pacific Occan. The geoid anomaly field is characterized by east-west
trcading bands of alternating highs and lows with an amplitude of about 2 to 3 meters and wavelengths
of about 2000-3000 km in the north-south direction. It has been suggested that perhaps shallow,
small-scale mantle convection may be responsible for these anomalies {e.g., Richter & Parsons, 1975;
Marsh & Marsh, 1976; McKenzie et al., 1980]. However, it is important to determine what portion of
the intermediate-scale geoid signal is produced by surface loads on the sea-floor before attempting to
associate the total signal with upper-mantle dynamic effects. The elastic part of the oceanic lithospherc
is capable of supporting short-wavelength features on the sca-floor because of its mechanical strength if
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the lithosphere has cooled sufficiently. .On the other hand, if the lithosphere is relatively young and
wecak, fcatures on the sea-floor will adjust isostatically. These two lithospheric responscs can be
modcled and compared with obscrvations of the ratio of the geoid and the sea-floor topography in the
wavenumber domain, i.e., the admittance [e.g, McKenzie & Bowin, 1976]. We have compared the
obscrved admittance with model admittance functions representing both regional! compensation
(flexure) and local compensation (Airy) to determine what part of the geoid signal results from
topagraphic features loading the surface of the lithosphere. Once the signal associated with surfacc
lithospheric loading has been identified, the signal arising from sub-lithospheric dynamic effects can be
isolated and treated separately. The approach that we have used on the “dynamic” signal has been to
consider upper-mantle fluid motions as giving rise to the sea-floor deformation and the associated
geoid anomaly.

BACKGROUND

Scales of the Geoid Anomalies

The surface representing the geoid anomaly ficld is composed of features of many length scales
(Figurc 1). Because the gravitational poteatial decreases with distance from the source (away-from-
thc-source continuation), the large-scale features most likely represent very deep sources, whereas the
short-scale features represent near-surface sources. Runcomn [1963,1964] interpreted the longest-
wavelength features of the geoid in terms of sublithospheric stresses produced by convection currents
in the mantle. Slightly shorter-wavelength features of the geoid have been correlated with the
subduction of a cold lithospheric slab [Chase, 1979; Crough & Jurdy, 1980; McAdoo, 1981; Chapman &
Talwani, 1982; Watts & Talwani, 1975; Grow & Bowin, 1975]. Even shorter-wavelength features than
those associated with the subducted slabs have been used to infer the mechanical and thermal
structures of the occanic lithosphere. The study of these geoid anomalies across fracture zones
[(Detrick, 1981; Sandwell & Schubert, 1982; Cazenave et al., 1982] provided information that distinguishes
between the thermal boundary layer model [Turcotte & Oxburgh, 1967] and the thermal plate model
[McKenzie, 1967] for the occanic lithospheré, with the data favoring the plate model. The shortest-
wavelength features of the geoid provide information relating to the mode of compensation of
individual scamounts and occanic islands [c.g., Watts et al, 1980). This resulted in an oceanic
lithosphere model with an effective eclastic thickness that increases with increasing age of the
lithosphere.

The Elastic Lithosphere

Geoid anomalies are the result of surface and/or subsurface density anomalies, but the amplitude
and wavelength of the anomaly can be affected by the mechanical propertics of the oceanic lithosphere.
The mechanical behavior of the lithosphere has beea extensively modeled using a thin elastic platc
approximation [Haxby et al., 1976; McKenzie & Bowin, 1976; Parsons & Molnar, 1976; Sleep & Sncll,
1976; McAdoo et al., 1978; McNutt & Menard, 1978; McNutt & Parker, 1978; McNutt, 1984). The clastic
lithasphere, whose thickness is only a fraction of the thermal lithosphere, is defined by the depth to
which clastic stress can be supported. Laboratory studies of minerals at high temperature and pressurc
yicld the minimum temperature at which significant stress relaxation occurs. Below this temperature,
thc mineral behaves more as an clastic solid than a viscous fluid. Because olivine is the primary
mineral in the mantle, such studies yicld minimum temperatures of 475°C and 675°C for wet and dry
olivine, respectively [Turcotte & Schubert, 1982). The depth of these isotherms is then the elastic
lithosphere thickness. Watts et al. [1980] found that the effective clastic thickness of the lithosphere in
the Pacific, determined by applying the elastic plate theory, is bounded by the 300°C and 600°C
isothcrms of a cooling plate model (Figure 2). Because a given isotherm migrates downward as the
lithosphere loses heat through conduction, the clastic thickness increases with increasing age of the




lithospherc. However, plate theory requires a constant value of thickness at old ages.

Scales of the Sea-floor Deformation

The intcrmediate-wavelength (2000-3000 km) geoid anomalies in the central Pacific offer an
opportunity to infer the mode of convective instability in the upper mantle. However, they alonc
provide insufficient information. It is necessary to consider the deformation at the sea-floor that would
be produced by the convective stresses in the upper mantle (dynamic topography), in conjunction with
thc geoid anomalies. These large-scale deformations are one source of sea-floor topography in the
occans. Just like the geoidal surface, the sea-floor is a surface with various scales of topography, not all
of which are directly produced by upper-mantle coavective stresses.

A long-wavelength source of sea-floor topography is the sea-floor subsidence, or the systematic
increase in the depth of the sca-floor away from a mid-oceanic ridge crest, which has been explained in
terms of simple thermal models for the evolution of the oceanic lithosphere [Watts & Daly, 1981). The
cflects on the sca-floor topography not due to the cooling of the Lthosphere can thus be isolated by
removing from the bathymetry a surface obtained by using the depth-age relation. This procedure
yields residual depth anomalies [Menard, 1973] which represent areas of anomalous topography not
explained by the cooling of the oceanic lithosphere. It is these topographic anomalies which may
provide useful information about convective motions in the upper mantle. However, one origin of
topographic anomalies is regional changes in crustal thickness. There are topographic rises which arc
associated with crustal thickening, as well as topographic depressions which are associated with a
thinner crust. These features can be understood in terms of Airy isostatic compensation, where a
topographic load at the sea-floor is compensated at depth by a root of lower density than its
surroundings.

Lithospheric Cooling and Small-scale Convection

The description of the thermal lithosphere as the upper, cold thermal boundary layer of Rayleigh-
Bcnard convection in the mantle [Turcotte & Oxburgh, 1967] predicts that conductive cooling will result
in lithospheric thickening and isostatic sea-floor subsidence, both cffects varying lincarly with the
square root of age of the sea-floor {Parker & Oldenburg, 1973). The associated heat flow would in turn
vary inversely with the square root of sca-floor age. However, the data suggest that the sea-floor
subsidence follows the predicted depth-age relation only to ages of about 80 Ma [Sclater et al., 1975;
Parsons & Sclater, 1977), and that the heat flow data fit the predictions to ages of about 50 Ma [Sclater
& Francheteau, 1970]. Both the depth-age and the heat flow-age curves flatten to a nearly asymptotic
value for older lithospheric ages. These departures from the boundary-layer-theory predictions for
older lithospheric ages have been ascribed to additional heat supplied at the base of the lithosphere. A
variety of mechanisms have been suggested that may supply this heat. Some of these include: viscous
heating at the lithosphere-asthenosphere boundary with age [Schubert et al., 1976, hot-spot lithospheric
reheating [Heestand & Crough, 1981], and small-scale convection in the upper mantle, with horizontal
dimensions much smaller than the dimensions of the plates themselves: [Richter, 1973; Richter &
Parsons, 1975; McKenzie & Weiss, 1975; Richter & Daly, 1978]. The high Rayleigh-number laboratory
expcriments of Richter & Parsons [1975] have shown that convective motions can occur at several
horizontal scales. Further, they showed that the resulting near-surface convective motions were in the
form of rolls with axes oriented parallel to the direction of motion of a moving upper boundary.
Parsons & McKenzie [1978] argued that the time required for the formation of these convective rolls
might be too long, except for the fastest-moving plates, such as the Pacific plate.

The depth of mantle convection has been a topic of much debate for some time now. The two
apposing views presently held are that 1) thermal convection is shallow, and is confined to the upper
700 km of the mantle [e.g., McKenzie et al., 1974]; and 2) thermal convection is deep and extends
through the entire depth of the mantle [e.g., Davies, 1977; Elsasser et al., 1979]. Much work has been
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donc recently on determining whether or not a second scale of convection exists in the mantle [e.g.,
Parsons & McKenzie, 1978; Yuen et al.; 1981; Jaupart & Parsons, 1985; Yuen & Fleitout, 1984; Buck &
Pannentier, 1986; Hinojosa, 1986]. The primary concern of most of these studies was to understand the
conditions under which the cold thermal boundary layer will become unstable. The results of ecach
study depend on the rheology of the convecting layer. Parsons & McKenzie [1978] treated a constant
viscosity layer and found that the onset of the boundary layer instability coincides with the time at
which the departure from the depth-age curve is observed. Yuen ef al. {1981} found that if the influencc
of tcmperature on viscosity is coasidered, fast growth rates of the instabilitics can be seea if the upper-
mantle viscosity is of the order of 10% Poisc. However, this value for the viscosity is inconsistent with
the post-glacial rebound value of 102 Poise [Cathles, 1975). Raising the mean viscosity of the upper
mantle has the effect of inhibiting the instabilities. Jaupart & Parsons [1985] considered a depth-
dependent viscosity, and found their results consistent with the departure of the depth-age data for the
sca-floor. But their model did not allow for the variation of viscosity with temperature, as should be
the case for a thermally-activated creep process in the mantle. They fixed the viscosity profile to be a
function of depth only, which results in a lack of interaction between the developing temperature ficld
and the fluid flow. Yuen & Fleitout [1984] considered the cffects of both temperature and pressure on
the viscosity, and found that the instabilities can occur for mean upper-mantle viscosities of the order
of 10% Poise, but that the growth rate peaks at young ages (<50 Ma), and decreases thereafter with
time, just the opposite effect of what is thought to explain the depth-age curve flattening in the first
place. Buck & Parmentier [1986] studied the development of small-scale instabilities under a young
lithosphere being cooled from above by using a two-dimensional numerical model which includes a
temperature- and pressure-dependent viscosity. Their goal was to explain the existence of short and
fairly uniform wavelength (<200 km) gravity anomalics in the central east Pacific observed by Haxby &
Weissel [1986). These anomalies are said to persist to crustal ages of 50 Ma. Buck & Parmentier find
that the dominant wavelength of the predicted gravity anomalies increases from about 80 km after 2
Ma to 200 km after only 10 Ma, and that the amplitude of the predicted anomalies is close to that of
the obscrved anomalies if flexural damping by the lithosphere is neglected. However, as their
calculations continue to evolve in time, the vertical and horizontal length scales of the convection cells
also increase with time, They do not cxphc:tly mention just what wavelength is rcached as the
calculation is carried out in time.

The presence of such small-scale convcction in the upper mantlc would produce lateral density
heterogeneities which should be reflected in the gravity field. Marsh & Marsh [1976] first noticed an
cast-west pattern in the gravity ficld of the ceatral Pacific Occan with a north-south wavelength of
about 2000 kilometers after examining the PGS-110 frec-air gravity anomaly map relative to the degrec
and order 12 field model. They proposed that this pattern might be represcatative of a second scale of
convective motions confined to the upper mantle. This same pattern can be scea in the geoid anomaly
map of Figure 3. This figure shows the residual geoid anomalics after removing the Goddard Earth
Model (GEM) 10B gravimetric geoid ficld model [Lerch et al., 1982], up to degree and order 12, from
the full SEASAT geoid. This map contains geoid anomalics with wavelengths shorter than about 3300
km. The geoid highs are in white and the geoid lows are in gray, with a contour interval of 2 meters.
The amplitudes of these anomalics are about 2 to 3 meters, and they appear to be somewhat elongated
in the direction of plate motion, analogous to what was observed experimentally by Richter & Parsons
[1975]). A simple stability analysis led Parsons & McKenzie {1978] to conclude that thermal instabilities
could develop on the cold thermal boundary layer at ages greater than about 80 Ma, where cold
material descends and is immediately replaced by hot material from below, with this cycle continuing as
the lithosphere continues to cool. But because the linear geoid anomalies extend towards the younger
sca-floor, instabilities which develop at later ages will not explain the younger portion of the geoid
anomalies. To correct for this inconsistency, McKenzie et al. [1980] proposcd that instabilitics on a

sca-floor, thus producing the continuous pattern from young to old sca-floor.
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lower hot thermal boundary layer at a depth of about 700 km would rise and appear below the young
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Modecls of Isostatic Compensation

To decide on the origin of a topographic anomaly, the mode of isostatic compensation must be
inferred by observing the correlation between sea-floor topography and geoid anomaly. The approach
often used to accomplish this is the transfer'function technique, where the data are treated as timc
serics, or spatial serics. Dorman & Lewis [1970,1972] [irst used time series techniques to analyze the
relationship between gravity and topography of the continental United States. Later, McKenzie &
Bowin [1976] applied time scries analysis to gravity and bathymetry profiles in the Atlantic Occan.
Treating the bathymetry as a discrete input signal and the gravity anomaly profile as a discrete output
signal, they obtained information about the thickness of the occanic lithosphere at mid-oceanic ridges.
Others used transfer function techniques to further investigate the lithospheric propertics at mid-
oceanic ridges [e.g., Cochran, 1979; McNutt, 1979; Cazenave et al., 1983); whereas the properties of the
oceanic lithosphere at ascismic ridges have been studied by Watts [1978] and Detrick & Watts [1979].
The ratio of the Fourier transformed geoid anomaly data to the Fourier transformed sca-floor
topography data is the observed admittance. The admittance represents the amplitude of the resulting
geoid anomaly per unit amplitude of the sea-floor topography, at a given wavelength. However, the
observed admittance is two-dimensional and complex, but the isostatic response of the earth is
assumed to be isotropic and real. Therefore, the admittance obtained from the data must be averaged
in radial rings of width Ak in the wavenumber domain. The observed admittance can be computed by
using

_ <Re(N(K)H"(k))>
Z(lk|) <|H®*> ¢))

where N (k) is the geoid anomaly spectrum, H (k) is the sea-floor topography spectrum, ® denotes
complex conjugation, and the angle brackets'denote radial averaging. (We used a value of Ak equal to
twice the fundamental wavenumber in the averaging). The observed admittance can then be compared
with model admittance functions, in the wavenumber domain, which are derived from simple models of
isostatic compensation, the two most often used being Airy (local) isostasy and flexure (regional)
isostasy. In Airy isostasy, the mantle underneath a surface load is displaced to accommodate the load.
The Airy admittance function is given by
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where I is the universal gravitational coastant, g, is sca-water density, g, is occanic crustal density, gn
is mantle density, s is the mean sca-floor depth, d is the mean oceanic crust thickness, g, is the mean
value of the acceleration of gravity, and | k | is the magnitude of the wavenumber.

In regional isostasy, the elastic part of the lithosphere, which grows with age of the seca-floor [Watts
et al., 1980}, can help support a load by providing an clastic restoring force, in addition to the buoyancy
force of the low density root. The flexure admittance function is given by
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where all of the paramecters are as defined before, and D is the flexural rigidity of the clastic
lithosphere defined by

_ET?
T 12(147)
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where E is Young’s modulus, v is Poisson’s ratio, and T, is the cffective elastic thickness. Depending R
on the age of the lithosphere, the elastic part of the lithosphere can support topographic loads smaller
than a given wavelength called the flexural wavelength. Loads with wavelengths greater than the
flexural wavelength will not be fully supported, and will result in Airy-type isostatic adjustment. Using
a typical value of 20 km for the lithospheric elastic thickness [Warts, 1978], the corresponding value for
the flexural wavelength is about 386 km. Full isostatic adjustment can be shown to occur for
wavelengths greater than about 660 km for this value of elastic thickness. But if the lithosphere has
essentially no strength for static surface loads of wavelengths greater than about 660 km, the same must
hold true for dynamic stresses of convective origin applicd at the base of the lithosphere. The
consequence of this lack of strength is that we can expect the long-wavelength sea-floor topography to
be either Airy compensated or produced by upper-mantie convective motions of the same wavelength.
Coaversely, any sub-lithospheric stress distribution of short wavelength (shorter than the flexural
wavelength) will not be transmitted to the surface. Thus, the elastic lithosphere acts as a low-pass filter
of the stress distribution at the base of the lithosphere.,

The response of the clastic lithosphere to an applied surface load is contained in the admittance
function. In the limit of zero-clastic strength, the admittance is the Airy admittance function. For a
finite elastic strength, the response of the lithosphere is regional. Figure 4 shows the isostatic response i
of a zero-strength elastic plate, which results in complete isostatic compensation for all-wavelength
loads. The values of the physical parameters used to obtain these curves are listed in Table 1. These
curves give the resulting geoid anomaly (in meters) for every kilometer of sca-floor topography, at a i
given wavelength. The number next to cach curve is the depth of compensation in kilometers.
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TABLE 1. Airy Model Parameters

Parameter Symbol Value
Sea-water density P 1.025g em™
Oceanic crustal deasity Pe 2.800g cm™
Mean sea-floor depth s 4668 m
Universal gravitational r 6.67x10%cm>s3 gt
constant .
Acceleration of gravity & 980 cm 572

The isostatic response of a finite-strength elastic plate is shown in Figure 5, with the physical
parameters listed in Table 2. The number next to each of these curves is the effective clastic plate
thickness in kilometers. Note the response for the extreme cases of very-long and very-short
wavelength topography. The long-wavelength case reflects the local isostatic adjustment due to the
bending of the clastic plate. In the short-wavelength case, the elastic plate can fully support the surface
load, but the attenuation of its gravitational signal across the occanic water column gives a low value
for the admittance. In the intermediate range, the plate begins to bead while still supporting part of
the load (regional compensation), but the gravitational signal of the load is attenuated less, hence a
larger value for the admittance. Using these expressions, one can extract the depth of compensation in
the case of Airy isostasy, and an effective elastic thickness for the lithosphere which relates to its
flexural rigidity in the case of regional compensation.
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TABLE 2. Flexure Mode! Parameters

Parameter Symbol " Value
Sca-water density P 1.025g cm™
Oceanic crustal density Pe 2.800g cm™

Sub-crustal mantle density F- 3300g cm™

Mean sea-floor depth s 4668 m

Universal gravitational r 6.67x10% cm3 52 g
constant

Acceleration of gravity & 980 cm 52

Poisson’s ratio v 025

Young’s modulus E 10%g cmt 52

DESCRIPTION OF DATA AND STUDY AREA

SEASAT Geoid Anomalies

The radar altimeter of the SEASAT sitellite was used to record the instantancous altitude of the
satellite over the oceans, from which the geoid can be directly derived by determining the orbital
position of the satellite from tracking stations (cf. Fig. 1) [Marsh et al., 1986]. The mcasuremeats taken
by the SEASAT altimeter covered a period of 18 days from July 28 to August 15, 1978. The altimeter
took 1000 radar measurcmeats per sccond, which were smoothed to produce values at onc second
intervals (corresponding to about 7 km along a satellite ground track), with a resulting precision of
about 10 cm [Marsh & Martin, 1982]. Because this study deals with the intermediate-wavelength
features of the geoid, it is necessary to remove the long wavelengths. To achieve this, the Goddard
Earth Model (GEM) 10B gravimetric geoid field model [Lerch ef al, 1982}, up to degree and order 12,
has been removed from the full geoid (cf. Fig. 3). The sampling interval of the SEASAT data used is
1° in latitude and longitude,

SYNBAPS Bathymetry

The data set used to derive the sca-floor topography is the Synthetic Bathymetric Profiling System
(SYNBAPS) values obtained from the US. Naval Oceanographic Office (US.N.0.O.)). The
SYNBAPS bathymetry values are not actual recorded depths, but instead are values digitized and
gridded from bathymetric contour charts. Data are created by interpolation where observations arc
sparse, and regional trends are extrapolated so as to coastruct a continuous rcpresentation of the
bathymetry. The charts used were large to medium scale (1:1,000,000 or larger) publications of the
U.S.N.O.O. This procedure undoubtcdly makes the high frequency data unrcliable. However, since
this study concentrates on the longer wavelength data, errors in the high frequencies will not affect the
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results. The sampling interval of the SYNBAPS data used is 1° in latitude and longitude.

Study Area

The study area is a 3,100 krn x 3,100 kn region in the central Pacific Ocean extending in longitude’
from 205° to 236°, and in latitude from - 13° to 18°. Figurc 6 shows a map that locates the study arca,
and the bathymetry appears in Figure 7. The bathymetric features in the region include the Marqucsas
hot-spot swell at (220°,- 9°); two minor basins at (213°,- 8°) and (228°,- 8°); minor rises at (209°,0°)
and (220°,3°); a plateau at (222°,14°); a depression at (207°,14°); plus a number of major fracturc
zones being nearly cquidistant with a separation of about 1000 km, and running in a ncarly cast-west
direction. The age off-sets of the major fracture zones can be seen in Figure 8, which shows the age of
the sca-floor in Ma. This map was obtained by digitizing the age map of Pitrnan et al. [1974]. It can be
seen that the average age off-set across these fracturc zones is about 10 Ma, and that the age of the
sca-floor increases westwardly from about 30 to 90 Ma in the study area.

The depression at (207°,14°) scems to be associated with the flaxure of the lithosphere due to the
Hawaiian swell, whereas the rise at (209°,0°) scems to be an extension of the Line Islands. To a
certain degree, these features are all reflected in the high degree and order geoid (cf. Fig. 3).

RESULTS

Spectral Analysis
Ordinarily, both geoid anomalies and bathymetry are corrected for the subsidence of the oceanic

lithosphere duc to cooling (thermal isostasy). Because a cooling half-space model predicts the

observed subsidence in sea-floor depth, this correction is made by applying a relation in which the
depth of the sca-floor increases with the square root of the age of the sea-floor [Parsons & Sclater,
1977]. On the other hand, the geoid anomaly varies linearly with the age of the sca-floor at a rate of
about 0.16 m/Ma if the cooling half-space is used [Haxby & Turcotte, 1978). These operations arc
cquivalent to removing the trend from the data. But, because the lower harmonics (/,m <13,13) have
been removed from the geoid anomaly field, it is not clear that removal of the depth-age relation from
thc bathymetry will result in a ficld that can be directly compared with the geoid. To avoid this
ambiguity, cach data sct was prepared as follows:

(i) The shortest wavelengths were removed by smoothing in the space domain. This operation is
neccessary to satisfy the sampling theorem [e.g., Bloomfield, 1976};

(i) A mean depth of -4668 meters was removed from the bathymetry;

(iii) The bathymetry was passed through a Gaussian filter of the form

F(lk l)éexp['—'%'—’ﬁ] ©)

where k| is the magnitude of the wavenumber, and g is the half-width of the Gaussian filter. A valuc
of # = 1000 km was used to low-pass filter the bathymetry, which was thea removed from the full
bathymetry, thus yiclding the "sca-floor topography” used in this study (Figure 9). To reduce lcakage,
the borders of both data sets (10% of the data on each border) were cosine-tapered before taking the
two-dimensional discrete Fourier transform. To obtain the isostatic response of the lithosphere, it is
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assumed that the.

The average estimate of the admittance between the geoid anomaly field and the sea-floor
topography ficld was calculated as described above, and is shown in Figure 10, together with onc
standard deviation uncertaintics. To sce whether the admittance is in fact real valued, the phase of the

admittance was calculated by using

#(k)=Tan? [ z’: (g) (6)

Figure 11 shows the phase spectrum of the admittance. For wavelengths shorter than about 1700 km,
the phase is close to zero, and the admittance can be considered to be real.

Another quantity that is of importance is the coherence. The coherence is a measure of the fraction
of the observed geoid at a given wavelength that can be directly related to the sea-floor topography,
and is given by

— <IN@H(K)]>
P NN ()> <H O G)>. @

where all the quantities are as defined above. Figure 12 shows a plot of the coherence between the
geoid and the sea-floor topography against wavelength. The coherence is high (>0.5) for the whole
spectrum of wavelengths analyzed, which implics that, at a given wavelength, the geoid anomaly
correlates positively with the topography.

Except for the very long waveleagths (> 1700 km), the observed admittance has a value of less than
4 m/km. For the waveband between about 350 and 400 km, flexure admittance model curves with
clastic plate thicknesses of 15 and 23 km bracket the data, with a best-fitting value of 19 km. On the
other hand, the data in the waveband between about 400 and 1000 km are bracketted by 20 and 30 km
flexure curves, with a best fit of 25 km (Figure 13). The fact that there are two average values for the
clastic thickness can be understood by recalling that the sca-floor age in the study area varies from
about 30 to 90 Ma, with corresponding cffective clastic plate thicknesses of 16 to 28 km, respectivcly
(Watts, 1979].

The values of the admittance for wavelengths shorter than about 350 km lic on an Airy admittancc
curve with an average crustal thickness of about 25 km (Figure 14). This value for the crustal thickness
is not unreasonable in light of Detrick & Watt's [1979] conclusions that some topographic features form
on or necar a ridge axis where the lithosphere is hot and relatively weak, thereby allowing an
overthickening of the occanic crust. As the lithosphere cools and the features move away from the
ridge, the local compensation is "frozen in®, and the mode of isostasy will persist, showing up as a geoid
anomaly of relatively small amplitude. It is, thus, clear that topographic features on the sea-floor with
wavelengths shorter than about 1000 km are in isostatic equilibrium compensated both regionally and
locally.
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For wavelengths longer than about 1700 km, the observed admittance is relatively large (about 6 to
8 m/km). Clearly, neither Airy nor regional compensation can explain the long-wavelength responsc of
the lithosphere observed in the ceatral Pacific. By keeping in mind that the concept of isostasy
requircs essentially a dipolar distribution of mass, the fact that Z is large implies that the compensating
mass anomalies for features at these wavelengths are deep in the lithosphere, but more likely below it.

Those features with wavelengths between about 1000 and 1700 km are also not compensated by
cither an Airy or a flexural mechanism, but may result from the same sub-lithospheric processes as the
lower-harmonic anomalies.

Test for Reliability of the Truncated Geoid

It is common practice to remove the very long-waveleagth features from the geoid to expose density
heterogenceitics at shallower depths. This is done by removing a ficld model of low degree and order
from the full geoid (e.g., Marsh & Marsh, 1976; McKenzie et al., 1980; Watts et al., 1985]. However,
Sandwell & Renkin [1988] attribute the geoid features with waveleagths of about 3500 km not to a
physical source, but to leakage effects caused by using a truncation filter on the field model to a given
degree and order. If this is the case, then the spectrally-derived value for the admittance of between
about 6 and 8 m/km at the long-wavelength cad of the admittance spectrum would be an over-estimate
of the actual admittance. To test the reliability of that estimate, the admittance of the geoid-and—
topography ficlds was calculated in the spatial domain starting with the-fultuiifiltered geoid and
bathymetry ficlds. A surface of a given degree was fitt removed from the full SEASAT geoid
and bathymetry data. After removing the egree surface fit from both the geoid and the
bathymetry, the resulting ficlds were 5-point smoothed to remove the short-wavelength features.
Contour maps of the resulting geoid anomaly fields for the first to the third degrees are shown in
Figures 15-17. The corresponding sca-floor topography ficlds did not change much from surface to
surface, and only the topography resulting from the removal of a cubic surface is shown in Figure 18.
A scatter plot of the fields generated by using the cubic-surface fits was produced and is shown as

" “Figure 9. Noté that there is algearfy lincar dependence of the geoid on the topography, as can be
evidenced by the lincarity in th€ high density nucleus of data points. As with any two-dimensional data
sets there cannot be a perfect correlation because of the noisc which is inherent in the data. This noisc
appears on the scatter plot as a halo surrounding the lincar nucleus. The correlation coefficient
between the two ficlds is about 0.66, which is significant. The admittance can be obtained from this
plot by noting that it is simply the slope of the lincar trend. The slope of the best-fitting line is about
7.5 m/km, a value very close to the spectrally-derived values. From this comparison we can conclude
that the long-wavelength admittance function has been reliably obtained, and that it reflects a sub-

lithospheric source of compensation.

A mechanism which has not been discussed thus far is the dynamic support of sca-floor topography
by stresses associated with upper-mantle convective motions. These sub-lithospheric contributions to
the sea-floor topography and geoid anomaly ficlds will be addressed more fully in the following
sections.

Dynamically Supported Anomalies

We have studied the relationship between the intermediate-wavelength SEASAT geoid (A < 3300
km) and filtered sea-floor topography ficlds in the central Pacific Ocean in terms of the isostatic
response of the lithosphere. We have found that topographic features on the sca-floor with
wavelengths shorter than about 1000 km are compensated both locally, and regionally by the strength
of the eclastic lithosphere (Figure 13). However, the larger-scale sca-floor topography and the
corresponding geoid anomalics with a wavelength of about 2000 km cannot be explained by either local
or regional compensation, as evidenced by the large mean value of the observed admittance. The
decp-scated density anomalies which must exist to compensate the long-wavelength features of the
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sea-floor arec here considered to be the resuit of upper-mantle convective flow in a layer of highly
tcmperature-dependent viscous fluid with different combinations of heating from below and cooling
from above. Three cascs were considered:
1) cooling from above with low activation cacrgics;
2) heating from below with the inclusion of a low viscosity zoac for

a)  mecan upper-mantle viscosity of 102 Poisc,

b)  mean upper-mantle viscosity of 10® Poisc;
3) cooling from above with a low viscosity zone and with the thermal

perturbation localized close to the base of the lithosphere.

The geophysical quantities desired for comparison with the observables are the geoid anomaly and
the sea-floor topography, which are numerically calculated. The model must be able to simultancously
predict a geoid anomaly with an amplitude between 2 and 3 meters, a topography amplitude between
0.25 and 03 km, and an average admittance of between 6 and 8 m/km, as derived both spectrally and
spatially. Table 3 summarizes the obscrvational constraints which must be satisficd by the upper-
mantle convection model.

TABLE 3. Observational Constraints on Convection Model

Quantity Symbol Value
Wavelength A 2000 km
Geoid Np 2-3m "
Topography W, 025-03fm
Admittance Z  15mfrm
Activation cnergy Q 526 kJ [mol

Upper-mantle viscosity oo 102 Poise

The geoid anomaly is the resultant of three contributions: i) the effect duc to the top boundary
deformation, ii) the effect due to the bottom boundary dcformation, and iii) the effect due to the
internal density anomalies arising from the thermal variations of the fluid in the convecting layer. The
topography is the amount of deformation of the top boundary due to the normal stress distribution at
the base of the lithosphere arising from the buoyancy of the viscous material in the layer.

Consider the model of the oceanic lithosphere and the underlying upper mantle showa in Figure 20.
In this model, small-scale convective motions having the form of rolls with axes oricnted parallel to the
direction of plate motion arc assumed to be capable of developing in a variable-viscosity, infinitc
Prandt! number fluid. The depth of the layer is taken to be 700 km, which is approximately the depth
at which the seismic discontinuity, belicved—to—be;Mduc to a compositional change, occurs. The
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wavelength of the fluid motion is fixed at 2000 km, which corrcsponds to the dominant wavelength in
the central Pacific.

The viscosity of the fluid throughout the layer is assumed to be a strong function of temperature,
varying exponentially with inverse absolute temperature, the so-called Arrhenius law. The dynamic
viscosity is given as a function of absolute temperature by

nT) = nocxp[;%] (8)

where n, is a reference viscosity, Q is the activation encrgy, and R is the universal gas constant. By
using this form for the viscosity, a high-viscosity, quasi-rigid lid develops and evolves as the cold
thermal boundary layer grows with time. In this Lid, the velocitics are vanishingly small, and the
circulation is confined to the low-viscosity fluid below the lid.

The thermally-activated creep of mantle rock depends on the activation energy, O, which is a
measure of the sensitivity of viscosity to temperature. The higher the value of Q, the more sensitive the
viscosity will be to any variations in temperature. To keep the viscosity in the lid from blowing up as
the temperature approaches the upper-boundary temperature, a cut-off temperature defining a
‘mechanical boundary layer is used. At temperatures below this cut-off temperature, the viscosity of the
lid is held constant.

The dynamic viscosity can be written as a viscosity contrast by expressing the viscosity at
temperature T relative to the viscosity at the temperature of the lower boundary (77,) as follows

- ap[z ?]] ©®

As the temperature decreases from the lower-boundary temperature, the viscosity contrast increases
from a value of unity to a maximum value specificd by the viscosity of the lid at the cut-off temperature.
For heating from below, a reference viscosity, 1., of 102 Poise at a temperature of 1300°C will be
used.

The equations expressing conservation of mass, momentum, and eaergy in an infinite Prandl
number fluid layer with variable viscosity have been numerically solved using the single-mode, mecaa-
ficld approximation {e.g., Olson, 1981]. The development of the governing equations can be found in
Appendix A. The expressions for the net, or total, geoid anomaly and surface deformation resulting
from the convective motions have been derived in Appendix B. The solutions to Egs. (A15)-(A16),
subject to the boundary and initial conditions (Eqs. (A17)-(A18)), have beea obtained numerically by
using a computer code provided by Dr. Peter Olson. The values of the physical parameters used arc
given in Table 4.

e e e WP
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TABLE 4. Upper-mantle Convection Parameters

Parameter Symbol Value

Upper-mantle density P 35gcem™

Acceleration of gravity & 1000 cm 52
Cocfficient of a 30x10°%C?
thermal expansion

Thermal diffusivity < 80x10° cm?s?
Reference viscosity oo 102 Poise |

Case 1

The quantitics characterizing the evolution of the flow and heat transport are showa in Figures
21-25 as profiles across the layer for case 1. These quantities were calculated using a lower-boundary
temperature of 1300°C(Ra = 585,000) and a cut-off temperature of 450°C, at which point the viscosity
contrast was fixed at 100 (ic, Q = 51 kJ/mol). The adiabatic increase in temperature has been
ignored in all of the calculations. The solutions were monitored at Fourier times of o /d? = 0.001
(dotted line), 0.002 (dashed), 0.003 (dot-dash), 0.004 (long dash-dot), and 0.005 (dash-dot-dot-dot).

In Figure 21, the mean tcmperaturc is shown, with both the height and temperature axes
normalized to unity. The mean temperature of the fluid in the layer remains very nearly constant,
except at points close to the top boundary where large temperature gradients occur, representing the
loss of heat out of the top boundary. The temperature curve migrates downward with time as the fluid
continues to cool. Note that the advection term in Eq. (A16a) has little effect, resulting approximately
in the error function solution.

Figure 22 shows the viscosity coatrast across the layer, defined as the ratio between the viscosity at
a given point and the viscosity at the lower-boundary temperaturc (which is fixed at 102 Poise to
- conform with post-glacial rebound data). Note that because the viscosity is only a function of the mean
temperature, the shape of the viscosity curve follows that of the mean temperature curve, but in
reciprocal fashion, so that the viscosity contrast increases as the mean temperature decreases. Hence,
the viscosity contrast profile also shows very large gradients close to the upper boundary, with a quasi-
rigid lid forming on the coldest regions of the fluid. This lid grows with time as the fluid continues to
cool, and is evidenced by the downward migration of the viscosity contrast curve with time, thereby
reducing the amount of low-viscosity fluid available for fluid motion to occur.

Figure 23 shows the fluctuating temperature component with the axes scaled as in Figure 21,
Again, the solution is monitored at the same times as described above. The fluctuating temperature is
the thermal perturbation which provides the buoyancy to drive the fluid flow. For this case, the
fluctuating temperature peaks just below the thermal boundary layer, and its amplitude increases with
time as it migrates downward. The downward migration of the peak occurs because the growth of the
boundary layer lowers the hot, low-viscosity material where the temperature disturbance can grow.

/!
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The horizontal and vertical vejocity praofiles appear in Figures 24 and 25, rcspcctlvcly The
velocitics first slowly diminish theq rapidly increase wuh (|mﬁ Note that the velocities diminish in the
cold, quasi-rigid lid at the upper boundary y which dcvelops in response to cooling. If the viscosity is
large in this cold region, the transfer of heat will be purely by conduction, whercas below this region
heat is transported by coavection.

Figure 26 shows the geoid components as a function of age of the sea-floor calculated using the
parameters as in Figures 21-25. The open triangles represent the calculated values at equal intervals of
time. The largest compoacnt is the upper-boundary-deformation anomaly (dotted line) because it is
minimally attcnuated across the water column. The smallest component is the lower-boundary-
deformation anomaly (dot-dash linc) because its effect is strongly attenuated across the fluid layer and
water column. This component is about 1/2% of the upper component, and is hence not very
significant. On the other hand, the thermal component (dashed line) can be seen to be more
important. It gradually increases in magnitude duc to an increase in the fluctuating temperature with
time. The thermal component constitutes about 50% of the upper component at later times, but of
opposite sign, hence reducing the total geoid anomaly (solid line).

The total geoid anomaly, the upper-boundary deformation, and the admittance were also calculated
for activation energies between 51 and 154 kJ/mol. The reason for using low activation energies is to
investigate the cffect that a negligible mechanical lid has on the derived quantities. Figures 27 and 28
show the total geoid and the topography as a function of age for activation energies in kJ/mol of 51
(dotted line), 77 (dashed), 102 (dot-dash), 128 (long dash-dot), and 154 (dash-dot-dot-dot). For thc
lowest activation energy the viscosity of the mechanical lid is only about two orders of magnitude larger
than that in the core of the fluid. Heace, the normal viscous stress can be rapidly transmitted to the
surface through the thermal boundary layer. It can be seen in Fi 25 that the normal viseous stress
at the surface first decrcases then increases in magnitude as time increases. This accounts for the
increase in both the geoid and the topography with time. As the activation energy is increased,
however, the viscosity of the fluid becomes more sensitive to the temperature variatioas, and although
the thickness of the mechanical lid is small, the viscosity gradient in the thermal boundary layer
becomes very large. This increase in the gradient of the viscosity makes the velocity components
decrease rapidly in the thermal boundary layer, thereby weakly transmitting the normal viscous stress
to the surface. At carly ages, both the geoid and the topography are slightly larger than at older ages,
increasing with increasing activation caergy, and decreasing to a ncarly constant value at about 60 Ma.
The higher values at early ages can be explained by the initially large normal viscous stresses in a thin
thermal boundary layer. As time increases, the thermal boundary layer thickens, the material in the
boundary layer becomes more viscous, and the velocity gradients decrease. The corresponding
admittance for casc 1 is given in Figure 29. Except for the lowest activation cnergy calculation, the
admittance remains nearly constant around 30 m/km, increasing slightly with increasing activation
energy. This value of the admittance is identical with that for uncompensated topography with a
wavelength of 2000 km. The basic reason for this is that the low-density compensating mass arising
from the thermal perturbation is negligibly small for the time scale of interest. Although the thermal
perturbation increases with time as in Figure 23, the growth rate decreases with increasing activation
energy, and cannot therefore grow fast caough to compensate the topography. By using Eq. (2) ia the
long-wavelength limit, an effective depth of compensation can be obtained that will satisfy the observed
value of between 6 and 8 m/km for the admittance. The effective depth of compensation ranges from
about 58 to 77 km. Relative to the thickness of the layer, these are shallow depths. The thermal
perturbation is therefore localized properly, that is, at shallow depth. However, its magnitude is too
low, as reflected in the value of the admittance,

For the lowest activation energy calculation, the admittance decreases with time from about 27
m/km to about 17 m/km because the thermal perturbation, which acts to diminish the total geoid, can
grow at a faster rate due to the low viscosity of the mechanical lid. However, the admittance is still too
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large.

The case of cooling from above with relatively low activation energies clearly cannot satisfactorily
predict the observables. The location of the thermal perturbation is roughly correct, however, its
magnitude is too low.

Case 2a

In an attempt to increase the magnitude of the thermal perturbation in the time frame of interest
(i.c., 30 to 90 Ma), heating from below was added to the model. To make the model more realistic, a
low viscosity zone (asthenosphere) with a temperature of 1350°C exteading to an initial depth of 200
km, was also incorporated into the model. Also, the mechanical behavior of the lithosphere has been
taken into account by using an activation encrgy of 526 kJ/mol, and a cut-off temperature of 950°C.
These conditioas apply to both cases 2a and 2b.

In case 2a, the lower boundary of the fluid layer was maintained at a constant temperature of
1450°C, while the core was at an initial temperature of 1300°C. The reference viscosity was 102 Poisc
at the core temperature. Figure 30 shows the mean temperature scaled by the lower boundary
temperature. The time sequence is the same as in the previous profiles. It can be seen that both the
cold and the hot thermal boundary layers increase with time. Also, the higher temperature at the LVZ
gradually diminishes, and nearly disappears at a dimensionless time of 0.005 due to the large heat flux
out of that region. This profile is reflected in the viscosity contrast (Figure 31). The viscosity in the hot
thermal boundary layer is lower by about onc order of magnitude than the viscosity in the cell core,
whereas the viscosity in the LVZ is about one-third that in the ccll core at early ages. On the other
hand, the viscosity increases rapidly across the cold thermal boundary layer to a value five orders of
magnitude higher than that in the cell core. Note that the mechanical lid follows the growth of the cold
thermal boundary layer (it is simply the downward migration of the 950°C isotherm). The thermal
perturbation (Figure 32) grows rapidly in the hot thermal boundary layer because the viscosity is low,
and migrates upward with the growing boundary layer. The existeace of the hotter LVZ changes the
character of the thermal perturbation there because, as the LVZ cools, heat is transferred towards the
surface and towards the cooler cell core, and hence the thermal perturbation is negative there (i.c., the
material is cooler than the surroundings). Its growth, however, is slow because the viscosity contrast
there is low. In the steady-state case, which has not beea considered in this study, the negative thermal
perturbation changes sign, increases in magnitude to roughly the magnitude of the lower perturbation,
and resides just below the cold thermal boundary layer (personal communication, Dr. Peter Olson).
The velocity components (Figures 33-34) increase rapidly with time in the low viscosity fhuid in the hot
thermal boundary layer. It is clear that mildly vigorous convection is occurring in this case, as can be
seen from the vertical component of the velocity. The magnitude of the dimensionless vertical velocity
represents the Peclet number, ic., the ratio of the convective heat loss to the conductive heat loss
through the fluid layer.

The topography as a function of age for case 2a appears in Figure 35. It can be seen to increase
with age because the convection becomes more vigorous with time, thereby increasing the normal
viscous stress which deforms the surface. In Figure 36, the geoid components are shown as a function
of age. The thermal contribution to the geoid (dashed line) increases because the thermal perturbation
increases with time, but its magnitude is low because the thermal perturbation is buried deep in the
fluid layer. The total geoid (solid linc) is thercfore primarily due to the upper-deformation
contribution (dotted line). The admittance is shown in Figure 37. The admittance again has a high
value of about 30 m/km for all ages considered. Unlike the thermal perturbation in case 1 which was
located properly but of small amplitude, the thermal perturbation in case 2a has a large amplitude but
cannot penctrate close to the upper boundary in the time scale coasidered. To sce whether the thermal
perturbation could penetrate across the layer in a shorter time scale, the viscosity throughout the fluid
layer was reduced by a factor of 10, and the temperature of the lower boundary was raised to 1500°C.
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This 1s case 2b.

Case 2b

The mean temperature and viscosity contrast .profilcs for case 2b are shown in Figures 38-39 for the
ages of 28 Ma (dotted linc), 58 Ma (dashed), and 88 Ma (dot-dash). These profiles depart significantly
from their counterparts in casc 2a. The hot thermal boundary layer is thin because of the high hcat
flux into the layer from the lower boundary. Because the viscosity in the layer is lower by a factor of 10
cverywhere relative to case 2a, the larger fluid motions (Figures 41-42) convect heat effectively across
the layer, and the mean temperature in the core of the cell actually increases with time (Figure 38) with
a corresponding decrease in the viscosity (Figure 39). The thermal perturbation in this case (Figure
40) slowly rises with time to below the lithosphere, and the thermal contribution to the geoid (dashed
line, Figure 43) also increases in magnitude because the thermal anomaly is closer to the surface.
However, its increase is not enough to greatly reduce the large value of the total geoid anomaly (solid
linc, Figure 43). The large convective velocitics result in a large normal viscous stress which greatly
deforms the surface (Figurc 44), and hence the total geoid anomaly is dominated by the upper-
deformation contribution (dotted line, Figure 43). The admittance is shown in Figure 45. It is again
large (about 30 m/km) and reflects an uncompensated state of the topography because the thermal
perturbation is too small, relative to the effect of the surface deformation.

The case of heating the fluid layer from below with the viscosity everywhere lower by a factor of 10
results in very vigorous upper-mantle convection. The upper surface deformation and the total geoid
anomaly arc also large as a conscquence of such vigorous conmvection. Although the thermal
perturbation docs develop close to the surface, as is desired to compensate the topography and thus
lower the admittance, its growth rate is not large eaough to have a very significant cffect on reducing
the total geoid anomaly. Vigorous convection beneath the Pacific plate must therefore be ruled out.

Case 3

It has alrcady been established here that the thermal perturbation must be shallow relative to the
thickness of the layer, and must be of a large enough amplitude to be able to lower the value of the
total geoid, and hence lower the admittance.” By assuming a priori that there is a significant initial
thermal perturbation at a shallow depth, the total geoid anomaly, topography, and admittance were
calculated and contoured by varying the two parameters: amplitude and depth extent. It is not
unrcasonable - to assume this condition in light of Woodhouse & Dzewonski’s [1984] scismic
tomographic evidence of anomalously low wave velocitics below the East Pacific Rise, which can be
attributed to anomalously high temperatures. This is case 3.

In case 3, the fluid layer was cooled from above, with the lower boundary held at a temperature of
1300°C. The mechanical properties of the lithosphere were taken into account by using an activation
energy of 526 kJ/mol, as well as retaining the LVZ, The resulting geoid anomaly, topography, and
admittance for this case are shown in Figures 46-48 at an age of about 60 Ma. The hatched arcas in
Figures 46-47 correspond to the range of the observed values of geoid anomaly and topography,
respectively. There is a trade-off between the initial amplitude of the thermal perturbation and the
initial maximum depth exteat. If the initial amplitude is large, the perturbation need not extend very

Yw@ On the other hand, if the initial amplitude is small, the perturbation must have a wider vertical
extent’to produce the same anomaly. Figure 48 shows the admittance in this parameter space. The
hatched area corresponds to those combinations of parameters which result in acceptable solutions.
That is, those solutions in the hatched arca satisfy simultancously the observed geoid anomaly,
topography, and admittance. Figure 48 shows that the thermal perturbation must be shallow (between
about 100 and 120 km in depth), and with an amplitude between 65°C and 100°C. Figures 49-53 show
the evolution of the temperaturc and velocity ficlds for a thermal perturbation with an initial depth
extent of 120 km, and an initial amplitude of 78°C. The thermal perturbation (Figure 51) decays
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gradually with time. This is the case for all combinations of parameters in the hatched arca in Figurce
48. The fluid flows in responsc to this decaying perturbation, and as can be seen in Figures 52-53, the
flow also decays with time, and is coalined to the low viscosity zone just below the lithosphere. The
‘geoid anomaly, topography, and admittance for this casc appear in Figures 54-56, respectively.
Because the thermal perturbation decays with time, the fluid flow also decays with time, as well as the
resulting geoid anomaly and topography. The large values of the calculations at young ages seem to be
an artifact of the numerical model which could not be controlled.

The results of case 3 show that a shallow transient thermal perturbation can satisfactorily explain
the observables in the central Pacific. The thermal perturbation, perhaps originating deep in the
mantle, could be brought to the surface as a thermal pulse introduced at the ridge, which gradually
decays and eventually vanishes. However, the finite life-time of the Pacific plate prevents verification
of this idea at much later times. It takes about 400 Ma for a thermal perturbation to be conducted
across a lithosphere 100 km thick.

CONCLUSIONS

The geophysical constraints imposed by the intermediate-wavelength geoid anomaly, sca-floor
topography, and admittance in the central Pacific suggest that the thermal perturbation respoasible for
these anomalics must be situated at a shallow depth compared with the thickness of the fluid layer.
The results obtained here indicate that the thermal perturbation is sub-lithospheric, lying at a depth of
between 100 and 120 km. McKenze et al. [1974] and Parsons & Daly [1983] have obtained reasonable
agreements between predictions and observations by using a constant-viscosity fluid layer. The reason
for these agreements is that in an isoviscous fluid layer the heat from the interior can be transported to
a depth close to the upper boundary because of a lack of inhibition from a highly viscous lid. In this
case, the thermal perturbation, responsible for the deformation of the sea-floor and its compensation,
can fully develop at shallow depths, and in short time scales. However, no account has been taken for
the development of a rigid lid at the cold thermal boundary layer. In fact, the existence of a quasi-rigid
mechanical lid completely dictates the results, prohibiting any possible development of the thermal
perturbation in the vicinity of the lithosphere, and in the proper time scale. McKenzie [1977] has found
that the admittance in a highly variable-viscosity fluid is about onc order of magnitude higher than it is
for an isoviscous fluid. Also, he finds that the predicted values for the admittance in his calculations
are compatible with the observations of Sclater et al. [1975] for the North Atlantic, and Watts [1976] for
the central Pacific if a sinusoidal temperature variation is imposed at the top of a low-viscosity layer
overlying a higher viscosity half-space. This supports our conclusion that shallow thermal variations are
required to explain the observed anomalies. There appears to be no way in which the observables and
mechanical behavior of the lithosphere can be simultancously predicted by neglecting the temperature
dependence of the viscosity. Hence, the main conclusion emerging from this study is that organized
small-scale convection in the upper-mantle with a dominant wavelength of about 2000 km cannot
possibly exist if the temperature-dependent nature of the viscosity structure is considered.
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APPENDIX A: GOVERNING EQUATIONS

The relevant equations arc those expressing the conscrvation of mass, momentum, and energy. If
the flow is considered to be incompressible, the equation of continuity of mass is

V-u=0 (A1)

where u = (u,w) is the two-dimensional velocity vector in a vertical plane (x,z) parallel to the ridge
axis. -

The equations of motion expressing conservation of momentum in a Boussinesq, infinite Prandtl
number fluid are

0=-VP +Apg+V-r (A2)

where P’ is the pressure relative to the lithostatic pressure arising from the flow, Ap is the density
anomaly arising from the thermal variations, g is the acceleration-of-gravity vector, and r is the viscous
stress tensor. The sccond term on the right-hand side of Eq. (A2) is the buoyancy force per unit
volume which drives the convection. Using a lincar equation. of state, the buoyancy term becomes
-p,ag(T-T), where p, is the density at temperature T, and a is the coefficient of thermal expansion.
The third term on the right side of Eq. (A2) is the viscous force per unit volume which tends to retard
the flow. Assuming a Newtonian rheology, the viscous stress tensor can be written in indicial notation
as

. Bus
r‘.,.-,,{%"; » 3 (A3)

where i and j can be cither x or z, and 5 is the dynamic viscosity which is here a function of
temperature. Taking the curl of Eq. (A2) to climinatc the pressurc term results in the vorticity
cquation given by
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Coaservation of energy is expressed by the heat transport equation. Neglecting internal heat
generation and viscous dissipation of mechanical work, the energy equation is

%I +u-VT = V°T (AS)

where T is the temperature and « is the thermal diffusivity. The second term on the left-hand side of
Eq. (AS) is the convective transport of heat, while the right-hand side contains the diffusion term.

The equations of conservation of mass, momentum, and encrgy cannot be solved analytically
because of the non-linearities introduced by the variable viscosity and the finite-amplitude convective
velocities. They can, however, be solved numerically by the use of finite-difference schemes, subject to
suitable boundary and initial conditions. Even then, the computatioa is likely to take a large amount of
‘CPU time. A major simplification can be achieved by using the single-mode, mean-field approximation
to the two-dimensional convection problem at high Rayleigh and Prandtl numbers. This approximation
has been used extensively in the past to study stellar convection [e.g., Toomre et al, 1982}, and has also
been applied to problems in mantle convection for constant viscosity by Olson [1981] and for variable
viscosity by Yuen & Fleitout [1984], among others. Quareni et al. [1985] have compared mean-ficld and
two-dimensional solutions and have found that the two formulations yicld identical solutions for
Rayleigh numbers close to the critical value. Increasing the Rayleigh number increases the difference
between the two solutions, but the gencral trends of the flow are still predictable.

The mean field approximation consists of expressing the full temperature ficld in terms of a mean
temperature, T, and a fluctuating temperature, 6, being expanded in terms of a Fourier series along the
horizontal coordinate x. Keeping only the first term in the expansion results in the single-mode
expression of the mean-field approximation. The temperature can thus be written as

T(x,zt) = T(z.t) + 6(z,t)cos(kx) * (A6)

where k is the wavenumber of the single mode. Note that the temperature dependence of viscosity can
be simplified by assuming that the viscosity is a function oaly of the mean temperature profile.

The velocity ficld is also expanded in a Fouricr scries, and with a single-mode representation the
equations of motion can be lincarized. Let the vertical velocity, shear stress, horizontal velocity, and
net normal stress be given, respectively, by

T s T s L s n e II—
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w(x,z,t) = A,(z,t)cos(kx) (A7a) i
12(x,2,t) = A4(z,1)sin(kx) (A7) ;
u (x,z,t) = As(z,0)sin(kx) (ATc)

oule20) = (Az0) f)cos(ix) (A7d)

The A’s are the variable amplitudes of the periodic perturbations. By substituting Egs. (A7) into the
equations of coatinuity and motion, the following system of ordinary differential equations results

A1 [0 0 & 0](A:
d |42 0 0 4%n1]|42
dz |As]|Tlk1m 0 of|Aslt 0 (A8)
Ay 0% 0 0 A, -poagkl

O O

Note that in the above system of equations no derivatives of the viscosity function appear, thus allowing
for a completely general treatment of viscosity variations in the vertical. In the system Eq. (A8), the
variables 4,,4,,43, and 4 ¢ are explicit functions of the vertical coordinate, and are implicit functions
of time through the viscosity and the perturbation temperature. ‘

Substitution of Eqs. (A6), (A7a), and (A7c) into the heat transport cquauon (Eq.(AS)) results in
two equations for the mean tcmpcramrc and thc fluctuating temperature, given, respectively, by

oT 138 _ T

3 (AIG] “ (A%2)
& ar i
a— +A1—£ =K [ —&2 -kza] (Agb)

The boundaries of the layer are assumed to be isothermal and stress-free, ie.,

T=T, atz=0, t>0 (A10a)
T=T, atz=d, t>0 (A10b)
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0=0 atz =0,d; (20 {A10c)

where T, > Ty, and
w=r_=0 atz=0,d; t>0 (Alla)
Al =A2=0 az =0,d; 120 (Allb)

Eqs. (Al1) are conditions that allow for deformation of the boundaries.

To completely specify the problem, the initial conditions must be given. It is assumed that the fluid
is initially at a constant uniform temperature T,. Attimet = 0, the upper boundary is set to Ty = 0°C,
as would be the case along a ridge crest. In an undisturbed layer of fluid 4, = 8 = 0, and heat is
transferred purely by conduction. The solution to Eq. (A9a) in this case is given by the error function
solution

T@t) = T,af{?\/%] ' (A12)

wherey = d -z, d is the layer depth. However, to induce the growth of only one mode of circulation, a
periodic temperaturc perturbation with a wavelength equal to twice the layer depth and with an
amplitude of 1°C is used, ic.,

a,

8(z,0) = asm[-"E] (A13)

where §, = 1°C.

The equations governing the fluid flow and the transport of heat can be non-dimensionalized by
introducing the following dimeansionless variables



z =z/d (Al4a)

k' = kd (A14b)

t' =t /d? (A14¢)

(T’ 8) = (T.O/AT, AT =T, -T, (A14d)
n = ;,: =n(T,) (Al4c)

Dropping the primes for clarity, the non-dimensional form of Eq. (A8) is

A, 0 0 % 0j[A
Az 0 0 4k%np 1| |42
Asi Tk 1m o ofllas]t]| o (A15)
A, 04* 0 0||Aa, -Ra k@

LN
o O

where Ra = p,a gATds/n,:c is the Rayleigh number based on the tcmpcraturc drop across the layer,
and the viscosity is the reference viscosity.

The mean-temperature and fluctuating-temperature equations in dimensionless form are,
respectively,

& e, 2L - 22 i (Al6b)
Accordingly, the boundary conditions are

T=1az=0, (>0 (A17a)

T=0atz=1, t>0 (A17b)
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=0 atz=0,1; (20
Ay =A3=0 atz=0,1; t>0

and the initial conditions are

T=1at=0 0<z<1
T=0att=0, z=1

8 = (6,/AT)sin(xz) att =0, 0<z<1

(A17¢c)
(A17d)

(A18a)
(A18b)
(A18¢)




APPENDIX B: DERIVATION OF EXPRESSIONS FOR GEOID AND TOPOGRAPHY

In this appendix, the anomalous geotd and topography will be derived and numerically calculated in
terms of the quantities which charactenize the flow and heat transport in a fluid layer of temperature-
dependent viscosity.

Consider the circulation in Figure 20. The flow is physically confined to remain within the upper
and lower boundarics. But, because the viscous shear stress is assumed to vanish at the boundaries,
they are free to deform. To obtain the deformation of the boundaries, the equilibrium condition that
the net normal stress vanish there must be satisfied. That is to say,

oz(x) =0 (B1)

But, by definition,

0(X) = -P(x) + r5(x) (B2)

where P (x) is the total pressure, and r,,(x) is the normal viscous stress. But, thc total pressure can be
expressed as the sum of a hydrostatic tcrm, P,, and a perturbation term, P’, which arises from the
flow. Hence,

P() =P, + P (%) (B3)

From the choice of the z-axis, the hydrostatic pressure term can be written as

P,(x) = -Bpg,w (%) (B4)

where w(x) is the boundary deformation, and Ap is the corresponding density contrast across the
boundary. The condition (B1) now becomes
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Bogow(x) = P (x) - 7.0(X) (B5)

The perturbation pressure can be obtained from the x-component of the equation of motion. By

recalling the single-mode representations, Egs. (A7), the expression for the amplitude of the boundary
deformation becomes

4nkA s
Apg,

(B6)

where  and A are cvaluated atz” (z° = 0 at the lower boundary and z " = 1 at the upper boundary),
with the appropriate value for the density contrast. T

The deformation of the upper boundary is

_ 4a(1kds(D)

e (pm 'pv)go (B7)

Model predictions of topography can thea be made with Eq. (B7).

It now remains to derive an expression for the total geoid anomaly at the sea surface arising from
the fluid flow. Recall that the total geoid anomaly is the resultant of three contributions: i) the effect
due to the upper boundary deformation, ii) the effect duc to the lower boundary deformation, and iii)

the effect due to the internal density anomalies arising from the thermal variations within the layer of
fluid.

(i) The amplitude of the geoid anomaly due to the upper boundary deformation is [McKenzie &
Bowin, 1976]

2"{‘(}"" - Pv)wo C"'

N (z=s+d) = 2k

(B8)

where w, is given by Eq. (B7) and, again, all terms are as dcfined before. Note that this is a positive
contribution to the geoid.
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(ii) The amplitude of the geoid anomaly due to the lower boundary deformation is

8T

&

N‘O(Z =5 +d) =

n(0)4 3(0)e *¢+4) (B9)

Note that the density contrast across the lower boundary does not appear in Eq. (B9). However, for
gravitational stability to occur at the lower boundary, the material below must be denser than the one
above. And since the deformation of the lower boundary is positive, the geoid contribution is also
positive. '

(iii) The amplitude of the geoid anomaly produced by the thermal variations within the layer is
obtained by first calculating the gravitational potential at a point above a rising limb of a convection
cell. This field point is chosen because this is where the anomaly reaches an extremum (in this case, a
minimum). '

The general expression for the anomalous gravitational potential due to distributed two-
dimensional density anomalies is

_ Ap(x,,zl)dx,dl,
AU(xz) = 1‘];, J: Ve x )ty (B10)

where the primed variables are the source variables, and the unprimed variables are the field variables.
The density anomaly duc to thermal variations is

Ap(x',z’) = - pna AT (x ‘z $) (B11)
and

AT 2 ) =T 2")-TE") = 6 )cos(kx ') (B12)

Now, by virtue of the fact that the temperature perturbation is periodic in the horizontal coordinate,
the integration over x/ can be extended from -oco to +oo. Evaluating the potential at the ficld point
(x,2) = (0,5 +d) and noting that the cosine function is an even function, Eq. (B10) becomes




oo d §(z Yeos(hx Ydx dz’
AU +d) = - Zpnal ] \(;IL:"i(( +)d =
X by -Z

(B13)

But, the integral over x’ is nothing more than the Fourier cosine transform of onc over the
denominator at a fixed z”. By using Brun’s formula to relate the potential to the geoid, the expression
to evaluate for the thermal contribution to the geoid anomaly is

-2pn0ol 4

No(Oss +d) = —"— [ Ko}z “yaz’ | (B14)

where K, (kr) is the modified Bessel function of the second kind and zero order, r = s +d-z”, and k is
the wavenumber. (Note that this is a negative contribution to the geoid). The function K, decreases
rapidly with increasing argument.

This expression can be numerically integrated by using the trapezoidal rule on the calculated
fluctuating temperature profile at a given time, and by making a 6* order polynomial approximation of
the Bessel function. The total geoid anomaly is then

NT=N.P+N10+N’ (B15)
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Figure Captions

Fig. 1. The SEASAT geoid relative to a reference ellipsoid defined by a = 6378.137 km and f =
1/298.257 obtained from altimeter mecasurements. Contour interval = 2 m (Courtesy of J.G.
Marsh, NASA, GSFC).

Fig. 2. Elastic thickness as a function of age of the oceanic lithosphere at the time of loading.
The data are from Watts et al. [1980). The solid curves are the 300°C and 600°C isotherms based
on a cooling plate model (from Watts & Daly [1981]).

Fig. 3. The SEASAT geoid anomalies minus the GEM 10B (12,12) geoid field model. Contour
interval = 2 m (Courtesy of J.G. Marsh, NASA, GSFC).

Fig. 4. Airy model admittance curves for the values of depth of compensation shown next to each
curve,

Fig. 5. Flexure model admittance curves for the values of cffective clastic plate thickness shown
next to cach curve.

Fig. 6. Map showing the location of the study area in the central Pacific Ocean.
Longitude: 205° to 236°
Latitude: -13° to 18°

Fig. 7. Contour map showing the raw bathymetry in the study area. Contour interval = 300 m.

Fig. 8. Contour map showing the age of the sca-floor in the study area. Several major fracture
zones are apparent in the map. Contour interval = 10 Ma.

Fig. 9. Contour map showing the sca-floor topography obtained by Gaussian high-pass filtering the
bathymetry in the study area. Contour interval = 100 m.

Fig. 10. The observed admittance obtained by taking the ratio of the geoid to the topography in the
wavenumber domain. This quantity expresses the geoid anomaly in meters for every kilometer of
the sea-floor topography at a given wavelength. The error bars are one-standard-deviation
uncertainties.

Fig. 11. Phase spectrum of the observed admittance.
Fig. 12. Coherence spectrum between geoid and topography.

Fig. 13. Comparison of the observed admittance spectrum with flexure model admittance curves
for the values of the elastic plate thicknesses shown next to each curve.

Fig. 14. Comparison of the observed admittance spectrum with the Airy model admittance curve
corresponding to a depth of compensation of 25 km.

Fig. 15. The resultant geoid field after removing a first degree surface from the full geoid. Contour
interval = 2m.

Fig. 16. The resultant geoid field after removing a second degree surface from the full geoid.
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Contour interval = 1 m.

Fig. 17. The resultant geoid field after removing a third degree surface from the full geoid.
Contour interval = 1 m.

Fig. 18. The resultant topography ficld after removing a third degree surface from the bathymetry
in Fig. 7. Contour interval = 200 m.

Fig. 19. Scatter plot of the geoid (Fig. 17) and topography (Fig. 18).

Fig. 20. Schematic diagram showing the model of the lithosphere and the underlying upper mantle
with single-mode circulation in rolls oriented parallel to the direction of plate motion.

Fig. 21. The mean temperature profile for case 1 in which the fluid layer is cooled from above. The

lower-boundary temperature is fixed at 1300°C, the Rayleigh number is 585 x 10°, the reference

viscosity at T = 1300°C is 10® Poise, the activation encrgy is 51 kJ/mol, and the cut-off

temperature is 450°C. The profiles were taken at Fourier times of 0.001 (dotted linc), 0.002 (dashed
. line), 0.003(dot-dash), 0.004 (long dash-dot), 0.005 (dash-dot-dot-dot).

Fig. 22. The viscosity contrast profile for case 1 as described in the caption to Fig. 21.

Fig. 23. The fluctuating temperature profile for case 1 as described in the caption to Fig. 21.

Fig. 24. The horizontal velocity profile for case 1 as described in the caption to Fig. 21.

Fig. 25. The vertical velocity profile for case 1 as described in the caption to Fig. 21.

Fig. 26. The geoid components as a function of age for case 1 as described in the caption to Fig. 21.
The open triangles are the calculated values. The solid line is the total geoid anomaly. The dotted
line is the upper-boundary-deformation contribution, the dashed line is the thermal contribution,
and the dot-dashed line is the lower-boundary-deformation contribution.

Fig. 27. The total geoid anomaly as a function of age for case 1 with different values for the
activation energy in kJ/mol: 51 (dotted linc), 77 (dashed), 102 (dot-dash), 128 (long dash-dot), and
154 (dash-dot-dot-dot).

Fig. 28. The topography as a function of age for case 1 with the different values for the activation
energy as described in the caption to Fig. 27.

Fig. 29. The admittance as a function of age for case 1 with the different values for the activation
energy as described in the caption to Fig. 27.

Fig. 30. The mean temperature profile for case 2a in which the fluid layer is heated from below.
The temperature of the lower boundary is maintained at 1450°C, the Rayleigh number is 6.53 x 10°,
the reference viscosity at T = 1300°C is 10% Poise, the activation energy is 526 kJ/mol, the cut-off
temperature is 950°C, and the initial LVZ temperature is 1350°C extending to a depth of 200 km.

Fig. 31. The viscosity contrast profile for case 2a as described in the caption to Fig. 30.

Fig. 32. The fluctuating temperature profile for case 2a as described in the caption to Fig. 30.
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Fig. 33. The horizontal velocity profile for casc 2a as described in the caption to Fig. 30.
Fig. 34. The vertical velocity profile for case 2a as described in the caption to Fig. 30.
Fig. 35. The topography as a function of age for case 2a as described in the caption to Fig. 30.

Fig. 36. The geoid components as a function of age for case 2a as described in the caption to Fig.
30. The solid line is the total geoid anomaly, the dotted line is the upper-boundary-deformation
contribution, the dashed line is the thermal contribution, and the dot-dashed line is the lower-
boundary-deformation contribution.

Fig. 37. The admittance as a function of age for case 2a as described in the caption to Fig. 30.

Fig. 38. The mean temperature profile for case 2b in which the fluid layer is heated from below.
The temperature of the lower boundary is maintained at 1500°C, the Rayleigh number is 6.75 x 10°,
the reference viscosity at T = 1300°C is 102 Poise, the activation energy is 526 kJ/mol, the cut-off
temperature is 950°C, and the initial LVZ temperature is 1350°C extending to a depth of 200 km.
The time sequence corresponds to the ages of 28 Ma (dotted linc), 58 Ma (dashed), and 83 Ma
(dot-dash).

Fig. 39. The viscosity contrast profile for case 2b as described in the caption to Fig. 38.

Fig. 40. The fluctuating temperature profile for case 2b as described in the caption to Fig. 38.
Fig. 41. The horizontal velocity profile for case 2b as described in the caption to Fig. 38.

Fig. 42. The vertical velocity profile for case 2b as described in the caption to Fig. 38.

Fig. 43. The geoid components as a function of age for case 2b as described in the caption to Fig.
38. The solid line is the total geoid anomaly, the dotted line is the upper-boundary-deformation
contribution, the dashed line is the themal contribution, and the dot-dashed line is the lower-
boundary-deformation contribution.

Fig. 44. The topography as a function of age for case 2b as described in the caption to Fig. 38.
Fig. 45. The admittance as a function of age for case 2b as described in the caption to Fig, 38.

Fig. 46. The parameter space for the predicted geoid anomaly for case 3 in which the fluid layer is
cooled from above, the lower boundary temperature is fixed at 1300°C, the Rayleigh number is
5.85x 10°, the mean viscosity at T = 1300°C is 102 Poise, the activation encrgy is 526 kJ/mol, the
cut-off temperature is 950°C, and the initial LVZ temperature is 1350°C extending to a depth of
200 km. The thermal perturbation was initially introduced extending from the surface down to a
given depth (horizontal axis) and of a given initial amplitude (vertical axis). The hatched area
corresponds to the range of the observed geoid anomaly. Contour interval = 1 m.

Fig. 47. The parameter space for the predicted topography for case 3 as described in the caption to
Fig. 46. The hatched area corresponds to the range of the observed topography. Contour interval =
0.05 km. .

Fig. 48. The parameter space for the predicted admittance for case 3 as described in the caption to -
Fig. 46. The hatched area corresponds to the range where the geoid, topography, and admittance




simultaneously satisfy the observations. Contour interval = 1m/km.

Fig. 49. The mean temperature profile for casc 3 as described in the caption to Fig. 46 and for the
best combination of parameters as inferred from the hatched area:-on Fig. 48. The initial depth of
the thermal perturbation is 120 km, and the initial amplitude is 78°C. The profiles were taken at
Fourier times of 0.001 (dotted line). 0.002 (dashed), 0.003 (dot-dash), 0.004 (long dash-dot), and
0.005 (dash-dot-dot-dot).

Fig. 50. The viscosity contrast profile for case 3 as described in the caption to Fig. 49.

Fig. 51. The fluctuating temperature profile for case 3 as described in the caption to Fig. 49.

Fig. 52. The horizontal velocity profile for case 3 as described in the caption to Fig. 49.

Fig. 53. The vertical velocity profile for case 3 as described in the caption o Fig. 49.

Fig. 54. The geoid components as a function of age for case 3 as described in the caption to Fig. 49.
The solid line is the total geoid anomaly, the dotted line is the upper-boundary-deformation
contribution, the dashed linc is the thermal contribution, and the dot-dashed line is the Jower-
boundary-deformation contribution.

Fig. 55. The topography as a function of age for case 3 as described in the caption to Fig. 49.

Fig. 56. The admittance as a function of age for case 3 as described in the caption to Fig. 49.
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